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Abstract
We study equations of Riemann-Lanczos type on three dimensional

manifolds. Obstructions to global existence for global Lanczos poten-
tials are pointed out. We check that the imposition of the original
Lanczos symmetries on the potential leads to equations which do not
have a determined type, leading to problems when trying to prove
global existence. We show that elliptic equations can be obtained by
relaxing those symmetry requirements in at least two different ways,
leading to global existence of potentials under natural conditions. A
second order potential for the Ricci tensor is introduced.

1 Introduction

When studying a set of field equations it is often convenient to study asso-
ciated potentials rather than the fields themselves. A clear example is given
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by the Maxwell equations, where the usefulness of the scalar and vector
potentials hardly needs advertising. Another one is provided by the hydro-
dynamics of irrotational flows. In general relativity a striking example is
the Ernst potential, the introduction of which leads to solution-generating
techniques, enables studies using inverse scattering methods, and so on.
One can therefore hope that the introduction, in general relativity, of po-
tentials that exist under fairly general circumstances can lead to a better
understanding of the theory. For instance, four-dimensional potentials could
perhaps be used to gain better understanding of the dynamics of the fields
– this is indeed the case for Gowdy models, where transformations relating
some metric functions with the Ernst potential give insight into singularity
formation [17, 18]. Three-dimensional potentials could perhaps be used to
study initial data sets — potentials for the extrinsic curvature tensor are in
fact already used in the conformal method when generating solutions of the
vector constraint equations.

In 1962 Lanczos [15] proposed a tensor potential for the Weyl tensor,
and wrote what is referred to now as the Weyl-Lanczos equations [19, 22]. It
was subsequently showed by Bampi and Caviglia [2] that the Weyl-Lanczos
equations are always locally solvable for analytic metrics in four dimensions.
The existence question for smooth, but not necessarily analytic, Lorentzian
metrics has been eventually settled by Illge [12], who proved global exis-
tence of the Weyl-Lanczos potential on, say smooth, globally hyperbolic
four-dimensional space-times. It has been pointed out in [1] that Illge’s
method works for analytic pseudo-Riemannian metrics of any signature. In
the Riemannian case it should further lead to global existence for smooth
metrics when the associated elliptic operators are invertible.

There exist several publications on the Weyl-Lanczos equations in 4
dimensions for particular space-times, we only mention two recent ones:
in [16] O’Donnell finds solutions for Schwarzschild space-time, while in [8]
Dolan and Muratori construct solutions for stationary, axi-symmetric, four-
dimensional vacuum space-times. As far as other dimensions are concerned,
Edgar and Höglund prove non-existence of a Lanczos potential for the Weyl
tensor in n ≥ 7 dimensions in [9]. In [10] another kind of potential — a
double (2, 3)-form P ab

cde — is introduced in arbitrary dimensions by Edgar
and Senovilla.

In 1977 Udeschini Brinis [21] proposed the name “Riemann-Lanczos
equations” for the generalisation1 of the Weyl-Lanczos equations to the full

1Equations (1.1) were implicitly introduced by Lanczos in [14].
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Riemann tensor:

Rabcd = Labc;d − Labd;c + Lcda;b − Lcdb;a . (1.1)

Here one assumes at the outset that L is anti-symmetric in its first two
indices. The existence question for the Riemann-Lanczos equations in the
analytic category was considered by Bampi and Caviglia [2, 3].

The Weyl tensor vanishes identically in dimensions two and three, but
we can still study the Riemann-Lanczos equations there. The local exis-
tence question has been settled in [7, 11] for all smooth metrics in dimension
two, and for analytic metrics in dimension three. The purpose of this note
is twofold: first, we present some no-go results for the Riemann-Lanczos
equations. Indeed, we present some simple obstructions for the global exis-
tence of such potentials in Section 2, and we show non-ellipticity of a class
of natural reformulations of those equations in Section 4. Next, we present
three classes of related potentials for the Ricci tensor in dimension three:
In Section 5 we construct two classes of first-order potentials for the Ricci
tensor. Those potentials differ from the Riemann-Lanczos ones by relaxing
the original hypothesis of anti-symmetry of Labc in the first two indices.
In Section 6 we present a second-order potential for the Ricci tensor; this
involves an equation that arises naturally in the problem at hand.

2 Obstructions to existence of a global Riemann-
Lanczos potential

We start with a few straightforward non-existence results for global curva-
ture potentials. From (1.1) and from anti-symmetry of L in the first two
indices one has the following equation for the Ricci scalar

Rg := trgRic = 4Lab
a;b .

If M is compact, integration gives∫
M

Rg = 0 .

This implies:

(i) For compact two-dimensional manifolds a global Riemann-Lanczos po-
tential cannot exist if M is not diffeomorphic to a torus.

(ii) In dimensions larger than or equal to three, if g is Einstein the existence
of a global Riemann-Lanczos potential forces g to be Ricci-flat.
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(iii) In particular it follows that three dimensional non-flat compact space-
forms do not admit global Riemann-Lanczos potentials (the flat ones
admit of course a trivial one).

3 The Ricci-Lanczos equation

Contracting (1.1) in b and d we obtain

Rac = 2(L(a
n

c);n + Ln(a
n
;c))

= Lanc
;n + Lcna

;n + Ln
an;c + Ln

cn;a , (3.1)

We will refer to (3.1) as the Ricci-Lanczos equation.
Since in three dimensions the Riemann tensor is algebraically determined

by the Ricci one, one expects that a solution of the Ricci-Lanczos equation
provides a solution of the Riemann-Lanczos one. Let us show that this is
indeed the case:

Proposition 3.1 Let (M, g) be a three-dimensional pseudo-Riemannian man-
ifold. Every solution Labc of the Ricci-Lanczos equations which is anti-
symmetric in the first two indices provides a solution of the Riemann-Lanczos
equations.

Proof: Recall the three dimensional identity

Rabcd = gacRbd + gbdRac − gadRbc − gbcRad −
1
2
R(gacgbd − gadgbc) . (3.2)

In dimension three, pseudo-Riemannian metrics are, up to an overall
sign, either Riemannian or Lorentzian. In an ON frame (so that g00 = ε =
±1, g11 = g22 = 1) from (3.2) we have

R0101 = R00 + ε

(
R11 −

1
2
R

)
,

R0202 = R00 + ε

(
R22 −

1
2
R

)
,

R1212 = R11 + R22 −
1
2
R ,

R0102 = εR12 ,

R0112 = −R02 ,

R0212 = R01 . (3.3)
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We see that the first two equations are of the same type, similarly for equa-
tions four and five. For the components of the Ricci tensor and for the Ricci
scalar we obtain

R00 = 2(L010;1 + L020;2 − L011;0 − L022;0) ,

R11 = 2(−εL011;0 + L121;2 + εL010;1 − L122;1) ,

R22 = 2(−εL022;0 + L121;2 − L122;1 + εL020;2) ,

R01 = L021;2 + L120;2 − L022;1 − L122;0 ,

R02 = L012;1 + L121;0 − L120;1 − L011;2 ,

R12 = ε(−L012;0 − L021;0 + L010;2 + L020;1) ,

R = 4(ε(−L011;0 + L010;1 − L022;0 + L020;2) + L121;2 − L122;1) .

(3.4)

It is straightforward to check that the insertion of (3.4) into (3.3) reproduces
(1.1). 2

4 Lack of ellipticity

In [12] Illge obtains a well posed system of equations by adding certain
“gauge equations” to the four-dimensional Weyl-Lanczos equations. For
Lorentzian metrics Illge’s system of equations (4) is symmetric-hyperbolic,
whence global existence and uniqueness of solutions of the associated Cauchy
problem on globally hyperbolic manifolds immediately follows.2 In Rieman-
nian signature Illge’s equation (4) [12, p. 554] is elliptic. In dimension three
it is natural to ask the question whether the Ricci-Lanczos equation (3.1)
can be completed, by adding some further equations, to an elliptic system.
The answer is no, because the symbol3 associated to the partial differen-
tial operator (3.1) is not surjective. Indeed, let rac(k) denote the symbol of
(3.1), so that

rac(k)(L) = Lanck
n + Ln

ankc + Lcnak
n + Ln

cnka .

2In particular Illge’s Theorem 1 in [12] follows immediately from the symmetric hyper-
bolic character of this equation. In order to prove existence and uniqueness of equation
(4), one does not need to use his second-order equation (8) in [9].

3By symbol we always mean the symbol associated with the highest order derivatives;
this is sometimes called the principal symbol.
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An analysis of the map adjoint to rac(k) shows that the image of rac(k) is
the orthogonal of

{α(2kakc − |k|2gac) , α ∈ R} ,

hence rac(k) is never surjective. It follows that the addition of new equations
will never lead to a surjective symbol, in particular it will never lead to an
elliptic system (for which the symbol is bijective). This proves that a first
order approach à la Illge cannot succeed for the three-dimensional Ricci-
Lanczos equations.

An alternative approach to Illge’s has been proposed by Andersson and
Edgar in [1], by introducing “potentials for the potential”. In Riemannian
signature this leads to second order elliptic equations, and likewise one can
ask whether the introduction of some new fields, say ϕ, so that L in (3.1)
is a first order partial differential operator acting on ϕ, might lead to an
elliptic second order system for ϕ. Again the answer is no: since the symbol
of (3.1) is not surjective, composition from the right with another symbol
will never lead to a bijective symbol. It follows that a second order approach
à la Andersson–Edgar cannot succeed either.

Recall, now, that partial differential equations arising in geometry which
are not of definite type can sometimes be replaced by better behaved equa-
tions by exploiting the identities satisfied by the objects at hand: a flag-
ship example is provided by the Lorentzian Einstein equations, which are
not hyperbolic, but their solutions can be constructed by considering an
auxiliary hyperbolic system in wave coordinates. We have made various at-
tempts to obtain a construction of a Riemann-Lanczos potential along those
lines, exploiting the Bianchi identities, without success. In Appendix A we
present a method which came closest to providing a solution, without how-
ever yielding one, except perhaps in some special cases. We describe one
of our unsuccessful approaches there as some elements of the method there
be used in the next section to obtain a Lanczos-type potential for the Ricci
tensor. (Some readers interested in generalising the Andersson-Edgar-Illge
approaches might moreover find it useful to know that this approach, as well
as several similar ones, will not work.)

5 Ricci-Lanczos potentials

Our results were not very encouraging so far, but one can look for other
methods for solving the Ricci-Lanczos equation. Now a consistency require-
ment for the Riemann-Lanczos equation was anti-symmetry of L in its first
two indices, but there does not seem any special reason to impose such a
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restriction in the Ricci-Lanczos equation. (A solution of this equation will
then provide a potential for the Ricci tensor, but will not necessarily lead
to a solution of the Riemann-Lanczos equation.)

5.1 Potentials with no symmetry conditions

A simple ansatz which does not assume any symmetry for L, is the following:

Labc = Aca;b + λAcb;a + σAd
d;cgab , (5.1)

where A is symmetric while λ and σ are some real constants; obviously we
do not assume anymore that the g-trace of A vanishes. We set

Wa = Aa
b
;b , (5.2)

so that
Lnb

n = (1 + σ)Ac
c;b + λWb .

Inserting all this into (3.1) leads to

Rac = 2Aac
;b

b+2λ(Wa;c+Wc;a)+2(1+2σ)Ab
b;ac+2λ

(
R(a

bd
c)Abd + R(a

bAc)b

)
.

(5.3)
The choice λ = 0 and σ = −1/2 immediately gives an elliptic equation for
A,

Rac = 2Aac
;b

b . (5.4)

It then follows that there exists an open set of (λ, σ)’s around (0,−1/2) for
which (5.3) is elliptic. We note the following:

(i) On a compact Riemannian manifold with boundary (5.4) can always
be solved with the supplementary condition Aab = 0 on the boundary;

(ii) Integration by parts together with the usual elliptic theory (c.f., e.g. [4,
Theorem 4.1]) shows that on a compact Riemannian manifold without
boundary (5.4) can be solved if and only if for all covariantly constant
symmetric tensors σab one has∫

M
σabRab = 0 .

In this context we note the following result, pointed out to us by
J. Jezierski [13]:

Proposition 5.1 Let ri(p), i = 1, 2, 3 denote the eigenvalues of the
Ricci tensor at the point p ∈ M . Assume that either
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(a) there exists p ∈ M such that√
r1(p) + η

√
r2(p) + ε

√
r3(p) 6= 0 ,

for η = ±1 and ε = ±1 (for negative ri’s the square root is
understood in C), or

(b) there exists p ∈ M such that R(p) = 0, with the Ricci tensor at p
being non-zero.

Then all symmetric covariantly constant tensors on M are propor-
tional to the metric, with a constant proportionality factor.

Remark 5.2 One can use the results in [20] to show that the set of
metrics satisfying (a) is open and dense in the set of all metrics in a
C2 topology on a compact set. Note that (b) fails within the class of
scalar flat metrics if and only if g is flat.

Proof: Differentiating the equation Abc;d = 0 and commuting deriva-
tives one obtains

RabcdA
a
e + RaecdA

a
b = 0 .

Let Bab be the trace-free part of Aab, the last equation implies

RabcdB
a
e + RaecdB

a
b = 0 .

Contracting with gbc and using (3.2) it follows that

Be
bRbd − 4Re

bBbd +
R

2
Bed + BabRabged = 0 .

Writing B for the matrix Ba
b and R for Ra

b we obtain the matrix
equation

BR − 4RB +
trgR

2
B + trg(BR)id = 0 . (5.5)

Taking the transpose and comparing the resulting equation with (5.5)
we are led to

BR = RB , (5.6)

so that (5.5) can be rewritten as

3BR =
trgR

2
B + trg(BR)id . (5.7)
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Now, B and R are symmetric, they commute by (5.6), and can there-
fore be simultaneously diagonalised. Writing ri for the eigenvalues of
R and bi for those of B, and noting that b3 = −b1 − b2, (5.7) reduces
to the system(

3r1 − r2 + r3 2(r3 − r2)
2(r3 − r1) 3r2 − r1 + r3

) (
b1

b2

)
= 0 .

The determinant of the matrix above is

−3(r2
1 + r2

2 + r2
3 − 2r1r2 − 2r2r3 − 2r1r3) , (5.8)

which equals

−3(
√

r1+
√

r2+
√

r3)(
√

r1−
√

r2+
√

r3)(
√

r1+
√

r2−
√

r3)(
√

r1−
√

r2−
√

r3) .
(5.9)

Thus, if the product above is non-zero at p, then there exists a neigh-
borhood O of p on which this product is non-zero, and B vanishes
on O. Then Aab = σgab for some function σ on O, and it follows
from Aab;c = 0 that σ is constant on O. Uniqueness of solutions of
ODE’s implies that Aab = σgab throughout M (M is connected by
hypothesis).

To prove point (b), note that if R(p) = 0 but Rab(p) 6= 0, then one
eigenvalue of Rab, say r1, is strictly positive and one eigenvalue, say
r3, is strictly negative, which implies that no factor in (5.9) vanishes.
2

Proposition 5.1 and Remark 5.2 show that generically the only sym-
metric trace-free covariantly constant tensors σ are constant multiples
of g and therefore for generic metrics a necessary and sufficient condi-
tion for existence of a potential of the form (5.1) is∫

M
R = 0 . (5.10)

In particular if g is scalar flat, R ≡ 0, then (5.1) is always solvable (if
Rab ≡ 0 then Aab = 0 is a solution).

(iii) For Riemannian metrics on R3 which are asymptotically flat in the
sense of [5] Equation (5.4) can always be solved;

(iv) For Lorentzian globally-hyperbolic three-dimensional space-times (M , g)
Equation (5.4) can always be solved, with any arbitrarily prescribed
smooth (Aab, Aab;c)|S , where S is any Cauchy hypersurface in M .
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5.2 Labc’s symmetric in the first two indices

It is of interest to enquire about ansatzes for the Ricci-Lanczos potential
which satisfy further properties. For instance, instead of requiring L to be
anti-symmetric in the first two-indices one could ask for symmetry in those.
An integration by parts argument as at the beginning of Appendix A leads
then to the natural ansatz

Labc = Aac;b + Abc;a + Wagbc + Wbgac , (5.11)

with W as in (5.2), and with again a symmetric A. This gives

Lab
a = Aa

a
;b + 5Wb ,

and

Rac = 2Aac
;b

b+7(Wa;c+Wc;a)+2Ab
b;ac+2W b

;bgac+2
(
R(a

bd
c)Abd + R(a

bAc)b

)
.

(5.12)
Let σ(p) denote the symbol of the operator at the right-hand-side of (5.12),
we have

σ(p)ac = 2Aacp
bpb +7(Aabp

bpc +Acbp
bpa)+2Ab

bpapc +2Abdp
bpdgac . (5.13)

To check injectivity we assume σ(p) = 0; contracting with gac gives

0 = Aa
ap

bpb + 5Aabp
apb . (5.14)

Multiplying (5.13) with papc leads to

0 = Aa
ap

bpb + 9Aabp
apb . (5.15)

It clearly follows for p 6= 0 that the last two terms in (5.13) vanish. Mul-
tiplying (5.13) with pa similarly leads now to Aabp

a = 0, and using this
result back in (5.13) injectivity of the symbol for p 6= 0 follows. Since the
dimensions match, ellipticity ensues.

We note the following

(i) The operator, say P , defined by the right-hand-side of (5.12) is for-
mally self-adjoint.

(ii) The kernel of P (and thus of P ∗) consists of tensors such that the
left-hand-side of (5.11) vanishes.
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(iii) On a compact manifold with boundary we expect that there are no
non-trivial elements of the kernel with zero-boundary conditions; if so,
the usual coercitivity arguments should lead to existence of solutions of
the associated boundary value problem for all Rab. In particular there
should be no obstruction for local existence of potentials for smooth,
or C3 metrics.

(iv) Again assuming that there are no elements in the kernel of A which
go to zero at infinity4, the usual theory [5] would give existence of
solutions on R3 with asymptotically flat metrics.

(v) On compact manifolds without boundary, for those metrics for which
the kernel of P is spanned by constant multiples of the metric tensor
one obtains existence of the potential if and only if (5.10) holds. We
expect such metrics to be generic.

(vi) However, in the Lorentzian case, it is not clear whether the associated
evolution problem on globally hyperbolic manifolds is well posed.

6 A “non-Lanczos” potential for the Ricci tensor

In Appendix A we show that the equation (A.6) considered there fails to
produce a Riemann-Lanczos potential in general. However, as shown in
Proposition A.1, for any fixed k we obtain a class of elliptic operators acting
on A, which in some situations can be solved to obtain potentials for the
Ricci tensor. More precisely, for definiteness we consider (A.1) with ka = 0,

Labc = 2(Ac[a;b] − βAs[a
;sgb]c), (6.1)

where β is a constant different from 1/2, while

Aab = A(ab)

is a symmetric tensor field. The rationale for looking for such a form of Aab

is given at the beginning of Appendix A.
We restrict attention to scalar flat metrics so that (A.5) with α = −1

and γ = δ = k = 0 reads

P (A)ac := 2(L(a
n

c);n − Ln(a
n
;c)) = Rac , (6.2)

4This is the case for metrics which are flat outside of a compact set, and standard
manipulations should give the result for general asymptotically flat metrics.

11



(As in (A.4), consistency of this equation requires that the Ricci tensor be
trace-free.) Proposition A.1 shows that (6.2) is an elliptic equation for A.
It should be emphasised that this does not lead to a solution of the Ricci-
Lanczos equation (3.1), as the signs in (6.2) do not coincide with those in
(3.1).

We have the following:

Theorem 6.1 Let (M, g) be a compact scalar flat Riemannian manifold
without boundary, suppose that there exists β 6= 1/2 such that the formal
adjoint P ∗ of P has trivial kernel.5 Then there exists a globally defined
solution of (6.2) on M .

Proof: Let S2
0 denote the bundle of symmetric trace-free two-covariant

tensors. Given a bundle B we denote by ΓC∞(B) the space of smooth
sections of B. Ellipticity of P (cf. Proposition A.1) implies that we have
the Berger-Ebin splitting [4, Theorem 4.1]

ΓC∞(S2
0 ⊕ T ∗M) = Im P ⊕Ker P ∗ .

It follows that if P ∗ has trivial kernel, then there exists at least one (and
perhaps more than one) smooth solution (A, k) of the equation

P (A) = Ric .

2

If β = 1 then P is formally self-adjoint, and the integration by parts
argument at the beginning of Appendix A shows that the kernel of P consists
of trace-free symmetric tensors satisfying

Ac[a;b] = As[a
;sgb]c . (6.3)

One expects that generically there will be no such tensors, so that for generic
Riemannian manifolds as in Theorem 6.1 solutions of (6.2) will exist, and
will be unique in the class of solutions of the form (6.1) with β = 1. A
similar result should be true for asymptotically flat Riemannian metrics.

5Throughout this work elements of a kernel are non-trivial twice differentiable solutions
of the PDE; they can be assumed to be smooth if the metric is smooth.
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A An ansatz for the Riemann-Lanczos potential
that does not work

We seek L in the form

Labc = 2(Ac[a;b] − βAs[a
;sgb]c) + (kbgac − kagbc) , (A.1)

where β is a constant, ka is a vector field, while

Aab = A(ab)

is a symmetric tensor field. The rationale for looking for such a form of
Aab is the following: suppose that Rac is of the form (3.1), and let Aab be a
symmetric tensor; multiplying (3.1) by Aac and integrating over M (assum-
ing that either M is compact without boundary, or that the integration by
parts without boundary terms is justified one way or another) one obtains∫

M
Labc(Ac[a;b] −As[a

;sgb]c) = 0 .

So if L is of the form (A.1) with β = 1 and with ka = 0 one obtains Labc = 0,
hence uniqueness of the resulting L’s. The justification for the addition of
the k part will follow shortly; in any case we will see that this addition will
not solve the problems we are faced with, and that the ansatz (A.1) does not
seem to lead to solutions of the Riemann-Lanczos problem except perhaps
in special cases.

For any α, β, γ, δ ∈ R consider the second-order linear differential oper-
ator

Pα,β,γ,δ(A, k) = (P (A, k), S(A, k)) ,

where L = L(A, k) is given by (A.1), and

P (A, k)ac := 2(L(a
n

c);n + αLn(a
n
;c)) , (A.2)

S(A, k)a := ka;n
n − kn

;na + (2γ − 1)Ra
nkn + 2δka

+(1− 2β)
(
− γRabA

bn
;n − δAa

n
;n

+Rsn(3Aas;n − 2Asn;a)−Ras;nAsn
)

.(A.3)

We note that (A.2) with α = 1 would be equal to the Ricci tensor of g when
(1.1) holds. On the other hand if α = −1 then

gacP (A, k)ac = 2gac(La
n

c;n − Lna
n
;c) = 2(Lcn

c;n − Lnc
n;c) = 0 (A.4)
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identically, whatever A and k.
It turns out that the operator (A.2) has good properties if α = −1.

However, we would like to solve the equation

P (A, k)ab = Rab (A.5)

when α = 1. Now, the value of α will not matter if Ln(a
n
;c) = 0. The

question then arises, whether it is possible to choose k to enforce this last
equation; this is the origin of (A.3). Indeed, suppose that the following
system of equations for A and k holds:

Rac = 2(L(a
n

c);n − Ln(a
n
;c)) , (A.6)

0 := ka;n
n − kn

;na + (2γ − 1)Ra
nkn + 2δka

+(1− 2β)
(
− γRabA

bn
;n − δAa

n
;n + Rsn(3Aas;n − 2Asn;a)−Ras;nAsn

)
.

(A.7)

In (A.2) L has to be expressed in terms of A and k as in (A.1). The
constants β, γ and δ are left unspecified, and one would hope to be able to
adjust them to get properties which are needed for the operators at hand.
Since the trace of the left-hand-side of (A.6) vanishes automatically, (A.6)
is consistent only if g is scalar flat (i.e., Rg = 0), and therefore one would
have to restrict one’s attention to such metrics. Using the Bianchi identities
one can derive a system of equations for the trace Lna

n (see Proposition A.2
below). When the resulting equation (A.13) has no non-trivial solutions
one will have produced a solution of the Ricci-Lanczos equations. It would
finally follow from Proposition 3.1 that each solution of the Ricci-Lanczos
equations provides also a solution of the Riemann-Lanczos equations.

This program can unfortunately not work for general Riemannian met-
rics: while (A.2) gives an elliptic equation for A except for some special
values of β, ellipticity is spoiled by (A.3). Similarly for Lorentzian metrics
(A.3) does not provide a good evolution equation for k. We note that this
could be cured if one could find a means of ensuring e.g. that ka

;a vanishes,
or to modify the ansatz (A.1) to obtain equations in which ka

;a comes with
a factor different from minus one in (A.3), but we have not managed to do
that.

Let us pass now to the details of what has been discussed above, as this
will be useful for the purposes of Section 6:

Proposition A.1 Suppose that g is scalar flat, and assume that A is trace-
free. Let L be defined by (A.1). If g is Riemannian, α = −1, and β 6=
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1/2, then P is elliptic if viewed as acting on A at fixed k. However, S is
not elliptic if viewed as acting on k at fixed A whatever the values of the
parameters, and therefore P−1,β,γ,δ is not elliptic.

Proof: Because the principal part of P−1,β,γ,δ is block-diagonal, to estab-
lish ellipticity one needs to show that for 0 6= p ∈ TM the symbols σ(P, p) of
(A.2) and σ(S, p) of (A.3) are linear bijections — the first from symmetric
trace-free tensors to symmetric trace-free tensors, the second from vectors to
vectors. We choose an ON frame for the metric g in which p is proportional
to e3. Rescaling p we can then assume that p = (0, 0, p3 = 1). By an abuse
of notation we write σ(P, p) for σ(P, p)A, similarly for other symbols. One
finds

σ(P, p)11 = 2A11 + 2βA33

σ(P, p)22 = 2A22 + 2βA33

σ(P, p)33 = 2α(A11 + A22 + 2βA33)
σ(P, p)12 = 2A12

σ(P, p)13 = ((1− α)(1− β) + αβ)A13

σ(P, p)23 = ((1− α)(1− β) + αβ)A23 . (A.8)

We find that for any choice of α, β we always obtain

R33 = α(R11 + R22) (A.9)

so that the operator (A.2) is not elliptic when mapping symmetric tensors
into symmetric tensors. However, if we assume that the tensor Aab is trace-
free

An
n = 0 , (A.10)

we can replace A33 by −A11−A22, and rewrite the first three of the symbol
equations (A.8) as

σ(P, p)11 = 2((1− β)A11 − βA22)
σ(P, p)22 = 2((1− β)A22 − βA11)
σ(P, p)33 = 2α(1− 2β)(A11 + A22) . (A.11)

We see that for Aab trace-free as assumed and for the choice α = −1 we
obtain that the symbol equations satisfy

σ(P, p)11 + σ(P, p)22 + σ(P, p)33 = 0 .

15



If β 6= 1/2 the linear map (A11, A22) → (σ(P, p)11, σ(P, p)22) is bijective,
which easily implies that the symbol σ(P, p) has now rank five . As we have
five independent components of Aab, we obtain ellipticity of P for the choice
An

n = 0 and α = −1.
To finish the proof, we note that the symbol σ(S, p) of (A.3), again for

the choice of ea so that p = (0, 0, p3 = 1), is given by

σ(S, p) = (0, k2, k3) ,

which is not elliptic. 2

We set
Za = La

n
n , Wa = Aa

n
;n ,

so that for trace-free tensors Aab we have

Za = (1− 2β)Wa − 2ka . (A.12)

Proposition A.2 Suppose that g is scalar flat and that A is trace-free. As-
sume further that S(A, k) = 0 and that (A.5) holds. Then the vector field Z
satisfies the system of equations

(2αβ−α−β+1)Za
;c

c+(2αβ−α+β−1)Zc;a
c+(1−2β+γ)RasZ

s+δZa = 0 ,
(A.13)

which is elliptic if α 6= 0, β 6= 1/2, and 2αβ − α− β + 1 6= 0.

Proof: Since g is scalar flat we have Rac
;c = 0. This leads to the three

equations

0 = Rac
;c

= (2αβ − α− β)(Aan
;nc

c + Acn
;nac) + 2βAns

;sna + 2Aac;n
nc

−Acn;a
nc −Aan;c

nc + (2α− 1)(ka;c
c + kc;a

c) + 2kn
;na , (A.14)

which can be rewritten using the Ricci identities and the expression for the
Riemann tensor in terms of the Ricci tensor valid in 3 dimensions. Using
the substitution Wa = Aa

n
;n, equations (A.14) turn into

0 = (2αβ − α− β + 1)Wa;c
c + (2αβ − α + β − 1)Wc;a

c

+(1− 2β + γ)RacW
c + δWa − δAa

n
;n − γRacA

cn
;n + Rsn(3Aas;n − 2Asn;a)

−Ras;nAsn + 2kn
;na + (2α− 1)(ka;c

c + kc;a
c) . (A.15)
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Here we have added and removed a term γRacW
c = γRacA

cn
;n, as well as a

term δWa = δAa
n
;n. Expressing W in terms of Z using (A.12) one obtains

0 = (2αβ − α− β + 1)Za;c
c + (2αβ − α + β − 1)Zc;a

c

+(1− 2β + γ)RacZ
c + δZa

+2(2αβ − α− β + 1)ka;c
c + 2(2αβ − α + β − 1)kc;a

c

+2(1− 2β + γ)Rack
c + 2δka

+(1− 2β)
(
− δAa

n
;n − γRacA

cn
;n + Rsn(3Aas;n − 2Asn;a)

−Ras;nAsn + 2kn
;na + (2α− 1)(ka;c

c + kc;a
c)

)
. (A.16)

Equation (A.3) is equivalent to the vanishing of the sum of the last four lines
above, leading to (A.13). To check ellipticity we calculate, choosing ea as
before and rescaling p so that p = (0, 0, p3 = 1), the symbol σ(p) and obtain

σ(p)1 = (2αβ − α− β + 1)Z1

σ(p)2 = (2αβ − α− β + 1)Z2

σ(p)3 = 2α(2β − 1)Z3 (A.17)

and ellipticity of (A.13) follows. 2

A simple way of ensuring that (A.13) implies Z = 0 is the following; the
restrictions on the constants are far from being optimal:

Proposition A.3 Suppose that α = −1, β ∈ [0, 2/3], γ = −1+β and δ < 0.
If M is compact without boundary, then the only vector field Z satisfying
(A.13) is Z = 0.

Proof: Let Z be a solution of (A.13) with α = −1. Rewriting the RabZ
b

term as a commutator of covariant derivatives, this is equivalent to

(2− 3β)Za
;c

c − βZc;a
c − (1− 2β + γ)(Zc

;c
a − Zc;a

c) + δZa = 0 . (A.18)

Multiplying by Za and integrating by parts one obtains∫
M

(
(3β − 2)Za;cZ

a;c + (1− β + γ)Za;cZ
c;a + (−2β + 1 + γ)(Zc

;c)2 + δZaZ
a
)

= 0.

(A.19)
The simplest choice γ = −1 + β leads to∫

M

(
(3β − 2)Za;cZ

a;c − β(Zc
;c)2 + δZaZ

a
)

= 0 . (A.20)
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With our choice of δ and β all terms have the same signs, leading to Z = 0,
as desired. 2

In the Lorentzian case we choose the signature (−,+,+) and we use the
index range 0, 1, 2 to label local orthonormal frames ea, with e0 — timelike.
We examine first whether our system of equations leading to (A.2), again for
the ansatz (A.1), consists of a strictly hyperbolic system of equations (cf.,
e.g. [6, p. 590] for definitions). Using an ON frame again, assuming An

n = 0,
and that g is scalar flat, the five independent second-order equations (A.2)
for Aab read

P (A, k)00 = 2[((α− 2αβ)∂00 + ∂11 + (1− β)∂22)A00 + β(∂22 − ∂11)A11

+(β + 2αβ − 1− α)(∂01A01 + ∂02A02)− 2β∂12A12] + l.o.

P (A, k)11 = 2[β(∂00 + ∂22)A00 + (−∂00 + (2αβ − α)∂11 + (1− β)∂22)A11

+(1 + α− β − 2αβ)(∂01A01 − ∂12A12)− 2β∂02A02] + l.o.

P (A, k)01 = (1 + β + α− 2αβ)∂01(A00 −A11) + ((α− 1 + β − 2αβ)
(∂00 − ∂11) + 2∂22)A01 + (2αβ − β − 1− α)(∂12A02 + ∂02A12) + l.o.

P (A, k)02 = (α + 1 + β − 2αβ)∂02A11 + (2αβ − 1− β − α)(∂12A01 + ∂01A12)
+((α− 1 + β − 2αβ)(∂00 − ∂22) + 2∂11)A02 + l.o.

P (A, k)12 = (2αβ − β − α− 1)∂12A00 + (1 + α + β − 2αβ)(∂02A01 + ∂01A02)
+(−2∂00 + (1− β + 2αβ − α)(∂11 + ∂22))A12 + l.o. , (A.21)

where l.o. stands for all remaining lower-order terms in each equation. As
before, consistency of zero-traces of A and Ric forces us to impose α = −1;
this will be assumed from now on.

In order to check whether the equations (A.21) form a hyperbolic second-
order system, we must examine the determinant Q of the coefficient matrix
of the Aab in (A.21), where each ∂i is replaced by a vector component ξi.
This determinant can be written as

Q =
∣∣∣∑ Qijξiξj

∣∣∣ ,

where the Qij are the coefficients composing the coefficient matrix.
We wish to calculate Q for our system for α = −1 and for a vector ξ

with components (1, k, 0). Computer algebra gives

Q = 8(4− 20β + 33β2 − 18β3)(k − 1)5(1 + k)5 (A.22)

which clearly always has the roots k = 1 and k = −1, with multiplicities
five each unless the prefactor vanishes. Thus the characteristic directions
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are the light-cone directions. Since we obtain multiple eigen-directions, we
conclude that the system (A.21) is not strictly hyperbolic.

This, in itself, does not prove that the evolution problem for (A.6) con-
sidered as an equation for A is ill-posed, but shows that the results from the
theory of strictly hyperbolic systems do not apply here.

For further reference we write P in full details,

P (A, k)ab = 2Aab
;c

c −Aa
c
;bc −Ab

c
;ac + (1− 3β)(Aa

c
;cb + Ab

c
;ca) + 2βAcd

;cdgab

−3(ka;b + kb;a) + 2kc
;cgab

= 2Aab
;c

c − 2R(a
cd

b)Acd − 2Rd(aAb)
d − 3β(Aa

c
;cb + Ab

c
;ca) + 2βAcd

;cdgab

−3(ka;b + kb;a) + 2kc
;cgab

= 2Aab
;c

c + ST
{
−2R(a

cd
b)Acd − 2Rd(aAb)

d − 6βAa
c
;cb − 6ka;b

}
, (A.23)

where we use the symbol ST {·} to denote the symmetric traceless part.
When studying mapping properties of P−1,β,γ,δ one needs to consider

the formal adjoint P∗
−1,β,γ,δ of P−1,β,γ,δ. Writing P∗

−1,β,γ,δ as

P∗
−1,β,γ,δ = (P ∗(A, k), S∗(A, k)) ,

after several integrations by parts one obtains

P ∗(A, k)ab = 2Aab
;c

c + ST
{
−2R(a

cd
b)Acd − 2Rd(aAb)

d − 6βAa
c
;cb

+ (1− 2β) (γ(kcRca);b + δka;b − 3(Ra
ckb);c + 2(kcRab);c − kcRca;b)

}
,

= 2Aab
;c

c + ST
{
− 2Aa

c
;bc + (2− 6β)Aa

c
;cb

+ (1− 2β) (γ(kcRca);b + δka;b − 3(Ra
ckb);c + 2(kcRab);c − kcRca;b)

}
,

(A.24)
S∗(A, k)a = ka;n

n − kn
;na + (2γ − 1)Ra

nkn + 2δka + 6Aa
b
;b . (A.25)

Acknowledgements: A.Gerber wishes to thank Région Centre for finan-
cial support.

References

[1] F. Andersson and S. B. Edgar, Local existence of spinor potentials,
(1999), gr-qc/9902080.

19



[2] F. Bampi and G. Caviglia, Third-order tensor potentials for the Rie-
mann and Weyl tensors, Gen. Rel. Grav. 15 (1983), 375–386.

[3] , Third-order tensor potentials for the Riemann and Weyl ten-
sors. II. Singular solutions, Gen. Rel. Grav. 16 (1984), 423–433.

[4] M. Berger and D. Ebin, Some decompositions of the space of symmetric
tensors on a Riemannian manifold, Jour. Diff. Geom. 3 (1969), 379–
392.

[5] D. Christodoulou and Y. Choquet-Bruhat, Elliptic systems in Hs,δ

spaces on manifolds which are Euclidean at infinity, Acta. Math. 146
(1981), 129–150.

[6] R. Courant and D. Hilbert, Methods of mathematical physics, Inter-
science, New York, London, Sydney, 1962.

[7] P. Dolan and A. Gerber, Exterior Differential System, Janet-Riquier
Theory and the Riemann-Lanczos Problems in 2, 3 and 4 Dimensions,
Jour. Math. Phys. 44 (2003), 3013–3034.

[8] P. Dolan and B.D. Muratori, The Lanczos potential for vacuum space-
times with an Ernst potential, Jour. Math. Phys. 39 (1998), 5406–5420.

[9] S.B. Edgar and A. Höglund, The non-existence of a Lanczos potential
for the Weyl curvature tensor in dimensions n ≥ 7, Gen. Rel. Grav. 34
(2002), 2149–2153.

[10] S.B. Edgar and J.M.M. Senovilla, A local potential for the Weyl tensor
in all dimensions, (2004), gr-qc/0408071v1.

[11] A. Gerber, The Weyl-Lanczos and the Riemann-Lanczos problems as
exterior differential systems, with applications to space-times, Ph.D.
thesis, Imperial College, London, 2001.

[12] R. Illge, On potentials for several classes of spinor and tensor fields in
curved spacetimes, Gen. Rel. Grav. 20 (1988), 551–564.

[13] J. Jezierski, private communication.

[14] C. Lanczos, Lagrange multiplier and Riemannian spaces, Rev. Mod.
Phys. 21 (1949), 497–502.

[15] , The splitting of the Riemann tensor, Rev. Mod. Phys. 34
(1962), 379–389.

20



[16] P. O’Donnell, A solution of the Weyl-Lanczos equations for the
Schwarzschild space-time, Gen. Rel. Grav. 36 (2004), 1415–1422.

[17] A.D. Rendall and M. Weaver, Manufacture of Gowdy spacetimes with
spikes, Class. Quantum Grav. 18 (2001), 2959–2975, gr-qc/0103102.

[18] H. Ringström, Lecture at the Miami Waves conference, January 2004.

[19] A.H. Taub, Lanczos’ splitting of the Riemann tensor, Computers and
mathematics with applications, Pergamon, Oxford, 1976, pp. 377–380.

[20] T.Y. Thomas, The differential invariants of generalized spaces, Cam-
bridge University Press, 1934.

[21] E. Udeschini Brinis, A third-order “potential” tensor of the Riemann
tensor. I, Istit. Lombardo Accad. Sci. Lett. Rend. A 111 (1977), 466–
475 (1978).

[22] J.D. Zund, The theory of the Lanczos spinor, Ann. Mat. Pura Appl.
(4) 104 (1975), 239–268.

21


